/*==
Copyright (c) 2010-2014 Qualcomm Connected Experiences, Inc.
All Rights Reserved.
Confidential and Proprietary - Protected under copyright and other laws.
==*/

using UnityEngine;

//Add This script
using System.Collections;
using System.Collections.Generic;

namespace Vuforia
{
 /// <summary>
 /// A custom handler that implements the ITrackableEventHandler interface.
 /// </summary>
 public class DefaultTrackableEventHandler : MonoBehaviour,
 ITrackableEventHandler
 {

	//------------Begin Sound----------
 public AudioSource soundTarget;
 public AudioClip clipTarget;
 private AudioSource[] allAudioSources;
	
	//function to stop all sounds
 void StopAllAudio()
 {
 allAudioSources = FindObjectsOfType(typeof(AudioSource)) as AudioSource[];
 foreach (AudioSource audioS in allAudioSources)
 {
 audioS.Stop();
 }
 }

 //function to play sound
 void playSound(string ss)
 {
 clipTarget = (AudioClip)Resources.Load(ss);
 soundTarget.clip = clipTarget;
 soundTarget.loop = false;
 soundTarget.playOnAwake = false;
 soundTarget.Play();
 }

//-----------End Sound------------

 #region PRIVATE_MEMBER_VARIABLES

 private TrackableBehaviour mTrackableBehaviour;

 #endregion // PRIVATE_MEMBER_VARIABLES

 #region UNTIY_MONOBEHAVIOUR_METHODS

 void Start()
 {
 mTrackableBehaviour = GetComponent<TrackableBehaviour>();
 if (mTrackableBehaviour)
 {
 mTrackableBehaviour.RegisterTrackableEventHandler(this);
 }
[bookmark: _GoBack]	
	 //Register / add the AudioSource as object
 soundTarget = (AudioSource)gameObject.AddComponent<AudioSource>();
 }

 #endregion // UNTIY_MONOBEHAVIOUR_METHODS

 #region PUBLIC_METHODS

 /// <summary>
 /// Implementation of the ITrackableEventHandler function called when the
 /// tracking state changes.
 /// </summary>
 public void OnTrackableStateChanged(
 TrackableBehaviour.Status previousStatus,
 TrackableBehaviour.Status newStatus)
 {
 if (newStatus == TrackableBehaviour.Status.DETECTED ||
 newStatus == TrackableBehaviour.Status.TRACKED ||
 newStatus == TrackableBehaviour.Status.EXTENDED_TRACKED)
 {
 OnTrackingFound();
 }
 else
 {
 OnTrackingLost();
 }
 }

 #endregion // PUBLIC_METHODS

 #region PRIVATE_METHODS

 private void OnTrackingFound()
 {
 Renderer[] rendererComponents = GetComponentsInChildren<Renderer>(true);
 Collider[] colliderComponents = GetComponentsInChildren<Collider>(true);

 // Enable rendering:
 foreach (Renderer component in rendererComponents)
 {
 component.enabled = true;
 }

 // Enable colliders:
 foreach (Collider component in colliderComponents)
 {
 component.enabled = true;
 }

 Debug.Log("Trackable " + mTrackableBehaviour.TrackableName + " found");
		
		
 //Play Sound, IF detect an target

 if (mTrackableBehaviour.TrackableName == "zombie")
 {
 playSound("sounds/Zombie-Eng");
 }

 if (mTrackableBehaviour.TrackableName == "unitychan")
 {
 playSound("sounds/Anime-Eng");
 }

 }

 private void OnTrackingLost()
 {
 Renderer[] rendererComponents = GetComponentsInChildren<Renderer>(true);
 Collider[] colliderComponents = GetComponentsInChildren<Collider>(true);

 // Disable rendering:
 foreach (Renderer component in rendererComponents)
 {
 component.enabled = false;
 }

 // Disable colliders:
 foreach (Collider component in colliderComponents)
 {
 component.enabled = false;
 }

 Debug.Log("Trackable " + mTrackableBehaviour.TrackableName + " lost");
		
	 //Stop All Sounds if Target Lost
 StopAllAudio();
 }

 #endregion // PRIVATE_METHODS
 }
}

